AROMATIC MONOTERPENES FROM LAVANDULA GIBSONII*

S. A. PATWARDHAN and A. S. GUPTA

National Chemical Laboratory, Pune 411008, India

(Revised received 25 February 1983)

Key Word Index—Lavandula gibsonii; Labiatae; aromatic monoterpenes; 3-hydroxy- α , α ,4-trimethyl benzyl alcohol; 3-hydroxy- α , α ,4-trimethyl benzyl methyl ether; 3-hydroxy- α ,4-dimethyl styrene.

Abstract—Three aromatic monoterpenes, not reported previously as natural products, together with ursolic acid, were isolated from *Lavandula gibsonii*. They were characterized as 3-hydroxy- α , α ,4-trimethyl benzyl alcohol, 3-hydroxy- α , α ,4-trimethyl benzyl methyl ether and 3-hydroxy- α ,4-dimethyl styrene.

In continuation of our work on L. gibsonii [1] we report here the isolation and characterization of a new aromatic monoterpene, 3-hydroxy-α,α,4-trimethyl benzyl methyl ether (2) along with two other similar compounds, 3hydroxy- α , α ,4-trimethyl benzyl alcohol (1) and 3hydroxy-\alpha,4-dimethyl styrene (3). These compounds do not appear to have been reported previously as natural products but have been synthesized [2]. Column chromatography (Si gel) of the crude acetone extract of L. gibsonii resulted in isolation of compounds 1-3. Compound 1, mp 105–108°, analysed for $C_{10}H_{14}O_2$ (M⁺ at m/z 166). The IR spectrum showed the presence of only a hydroxyl group (3226 cm⁻¹) and no other functional group containing oxygen. Bands at 1613, 1515 and 1451 cm⁻¹ in the IR spectrum and the ¹H NMR spectral pattern indicated the aromatic nature of the compound. A 1,3,4-substitution pattern of an aromatic ring was indicated by the following signals in the ¹H NMR spectrum at $\delta 6.65$ (1H, dd, J = 8, 2 Hz), 6.91 (1H, d, J = 7 Hz) and 6.93 (1H, d, J = 2 Hz). Three methyls were indicated by a 3H singlet at 2.16 and a 6H singlet at 1.53. Acetylation of 1 yielded three products. A hydroxy aromatic monoacetate (6) $[\delta 2.03 \text{ (Ar-OCOMe)}, 3571 \text{ cm}^{-1} \text{ (OH)}], \text{ a diacetate}$ (5) $[\delta 1.90 \text{ (-OCOMe)}]$ and 2.18 (Ar-OCOMe) and the third product characterized as 4 [δ 2.16 (2 × Me), 2.25 (Ar-OCOMe) and 4.90, 5.18 (= CH_2)]. Considering all these data, the two structures 1 and 1a, analogous to carvacrol and thymol, respectively, seem to be biogenetically possible. Structure 1, 3-hydroxy- α , α ,4-trimethyl benzyl alcohol, was confirmed by its synthesis from 3hydroxy-4-methyl-acetophenone [3] by alkylation with methyl magnesium iodide.

Compound 2, mp 89–92°, $C_{11}H_{16}O_2$ (M ⁺ at m/z 180), showed an additional methyl signal at $\delta 3.08$ (–OMe) in its ¹H NMR spectrum by comparison with that of 1, along with a hydroxyl band (3400 cm⁻¹) in the IR spectrum. Acetylation of 2 gave an acetate 9 ($\delta 2.30$) and methylation yielded an ether (8) which exhibited an additional –OMe ($\delta 3.51$). Compound 1 also gave the diether 8 in addition to a monoether 7. This data clearly indicates that the isopropanolic hydroxyl of 1 is selectively methylated in

nature to produce 2. Thus, 2 was identified as 3-hydroxy- $\alpha,\alpha,4$ -trimethyl benzyl methyl ether.

Compound 3, a pale yellow viscous liquid, bp $120-125^{\circ}/0.6$ mm, $C_{10}H_{12}O$ (M $^+$ at m/z 148), possessed an aromatic methyl (δ 2.00), one methyl at δ 1.88, a methylene group (δ 4.46, 4.73) and a hydroxyl (3448 cm $^{-1}$). Compound 4 on hydrolysis produced 3 and, hence, 3 was characterized as 3-hydroxy- α ,4-dimethyl styrene.

In our first attempt to methylate 1 with dimethyl sulphate, instead of a mono- or diether, a solid, mp 104–105° was obtained which was identified as 4-methoxy-1,1,3,5-tetramethyl-3-(3-methoxy-4-methyl phenyl) indane (10) [4]. It has been observed that 1, on keeping in deuterochloroform solution for a long time, dimerized to give the corresponding hydroxyl compound 11, mp 170–171°.

EXPERIMENTAL

General exptal details have been described previously [1]. Earlier fractions (C_6H_6) , in the chromatography of fraction B_3 (35 g) [1] eluted methyl-3-acetoxy-16-methyl-heptadecanoate. A white solid (2 g), obtained from the later fractions (C_6H_6) , was acetylated (Ac_2O) and pyridine, esterified (CH_2N_2) and characterized as acetyl methyl ursolate mp 235–238° $(C_6H_6$ -petrol) (lit. 239–241° [5]).

C₆H₆-Me₂CO (98:2 and 96:4) gave a viscous dark material (10 g) which showed three spots in TLC (C₆H₆-EtOAc, 75:25). These were separated by passing through a Si gel column. C_6H_6 -Me₂CO (98:2) eluted 3 [0.550 g, bp 120-125° (bathtemp.)/0.6 mm] [lit. [2] $60-100^{\circ}$ (bath)/0.01 mm]; ${}^{1}H$ NMR: δ1.88 (3H, s), 2.00 (3H, s), 4.46, 4.73 (2H), 6.10 (1H), 6.25 (2H). MS m/z (rel. int.): 148 [M]⁺ (100), 133 (75), 131 (44), 115 (44), 108 (66), 107 (55), 105 (58), 91 (32), 77 (41), 51 (44), C₆H₆-Me₂CO (94:6) gave a white solid 2 (2 g) mp 89-92° (petrol). (Found: C, 72.91; H, 8.88. Calc. for $C_{11}H_{16}O_2$: C, 73.30; H, 8.95% IR v_{max}^{Nujol} cm $^{-1}$: 3400, 2994, 1590, 1449, 1408, 1267, 1117, 1058, 893, 805. ¹H NMR: δ 1.56 (6H, s), 2.18 (3H, s), 3.08 (3H, s), 6.53 (1H, dd, J = 7, 2 Hz), 6.88 (1H, d, J = 7 Hz) 7.05 (1H, d, J = 2 Hz). MS m/z(rel. int.): 180 [M] + (98), 165 (100), 150 (41), 149 (91), 135 (82), 133 (25), 121 (52), 107 (23), 91 (38), 77 (54.5). Acetate 9, (Ac₂O pyridine); bp 130-135°/1.0 mm; 1 H NMR: δ 1.53 (6H. s), 2.16 (3H, s), 2.30 (3H, s), 3.03 (3H, s), 6.93 (1H), 7.10 (2H).

^{*}NCL communication No. 3062.

Short Reports 2081

5 R = R' = Ac 6 R = Ac, R' = H 7 R = Me, R' = H 8 R = R' = Me

9 R = Ac, R' = Me

C₆H₆-Me₂CO (90:10) yielded a white solid 1 (4 g), mp 105–108° (lit. [2] 105–106°) UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε): 207 (4.56), 221 (4.49), 277 (3.97). ¹H NMR: δ1.53 (6H, s), 2.16 (3H, s), 6.65 (1H, dd, J = 8, 2 Hz), 6.91 (1H, d, J = 7 Hz), 6.97 (1H, d, J = 2 Hz). MS m/z (rel. int.): $166 [M]^+$ (66), 151 (100), 149 (20), 148 (40), 135 (20), 133 (26), 108 (33), 107 (15), 91 (26), 77 (40). Acetylation of 1 (0.2 g), with Ac₂O-pyridine gave 4 (0.02 g); bp $120-125^{\circ}/1.0 \text{ mm}$; ¹H NMR: δ 2.16 (6H, s) 2.25 (3H, s) 4.90, 5.18 (2H), 6.85 (1H), 6.95 (2H). Compound 5 (0.09 g), bp $145-150^{\circ}/0.9$ mm. ¹H NMR: δ 1.71 (6H, s), 1.90 (3H, s), 2.08 (3H, s), 2.18 (3H, s), 6.73 (1H), 6.90 (2H). Compound 6 (0.03 g), bp 135-140°/0.8 mm. ¹H NMR: δ 1.43 (6H, s), 2.03 (3H, s), 2.16 (3H, s), 6.83 (1H), 6.90 (2H). Etherification (NaH, DMSO, MeI) of 0.2 g of 1 gave 8 (0.082 g), bp 90–95°/1.0 mm, ¹H NMR: δ 1.5 (6H, s), 2.20 (3H, s), 3.03 (3H, s), 3.85 (3H, s), 6.75 (1H, dd, J = 8, 2 Hz), 6.85 (1H, d, J = 2 Hz), 6.98 (1H, d, J = 8 Hz) and 7 (0.1 g), mp 62° (petrol) [6] Methylation (Me₂SO₄, Me₂CO, K₂CO₃) of 1 (0.01 g) yielded 10, mp 104–105° (lit. [4] mp 95–96°). 1 H NMR: δ 1.01 (3H, s), 1.26 (3H, s), 1.56 (3H, s), 1.98, 2.03 (2H, 2ds, J = 12 Hz), 2.05 (3H, s), 2.1 (3H, s), 3.58 (3H, s), 3.75 (3H, s), 6.26 (2H, s), 6.28-6.66 (3H). Compound 11 was isolated from a CDCl₃ soln of 1 by

chromatography over Si gel as a white crystalline solid, mp 170–171° (petrol– C_6H_6) ¹H NMR: δ 1.0 (3H, s), 1.25 (3H, s), 1.56 (3H, s), 1.98, 2.31 (2H, 2ds, J=10 Hz), 2.16 (3H, s), 2.21 (3H, s), 4.43 (2H, br, exchanges with D_2O) 6.4 (2H, s), 6.53–6.83 (3H, m). MS m/z (rel. int.): 296 [M]⁺ (48), 281 (100), 266 (9.5), 265 (9.5), 251 (11.5), 189 (22.5), 173 (66.5), 157 (27), 133 (14), 128 (30).

Synthesis of 1. 3-Hydroxy-4-methyl-acetophenone (1.5 g, THF 20 ml) with Me MgI (from 2 g Mg and 9.7 g MeI in $\rm Et_2O$) yielded, after work-up with aq. NH₄Cl, 1 (1.29 g), mp, mmp 103–105° (Petrol- $\rm C_6H_6$).

REFERENCES

- Patwardhan, S. A. and Gupta, A. S. (1983) Phytochemistry 22, 165.
- 2. Leitich, J. and Wessely, F. (1964) Monatsh. Chem. 95, 129.
- 3. Morgan, G. T. and Pettet, A. E. J. (1934) J. Chem. Soc. 418.
- John, T. K. and Krishna Rao, G. S. (1976) Indian J. Chem. 14B, 805.
- 5. Khan, M. S. Y. (1968) Indian J. Pharm. 30, 213.
- 6. Bourgeois, G. and Lalande, R. (1972) Bull. Soc. Chim. Fr. 4324.